
 

 

Embedded Systems: A Comprehensive Online Course 
Course Overview: 

Welcome to the "Embedded Systems: A Comprehensive Online Course," meticulously 
designed to provide a robust theoretical foundation and practical insights into the fascinating 
world of embedded systems. This course delves deep into the interdisciplinary nature of 
embedded systems, integrating principles from computer science, electrical engineering, and 
software engineering. From the fundamental building blocks of microcontrollers and 
microprocessors to advanced topics in real-time operating systems, sensor integration, and 
software design methodologies, this curriculum is structured to equip learners with the 
essential knowledge and skills required to design, develop, and deploy intelligent embedded 
solutions. Throughout the course, emphasis will be placed on understanding the unique 
constraints and design challenges inherent in embedded environments, fostering a 
systematic approach to problem-solving. Prepare to transform your understanding of how 
the digital world interacts with the physical world, empowering you to create the next 
generation of smart and responsive devices. 

Target Audience: 

This course is ideal for undergraduate and postgraduate students in Electrical Engineering, 
Electronics and Communication Engineering, Computer Science Engineering, 
Instrumentation Engineering, and anyone interested in gaining a profound understanding of 
embedded systems design. 

Prerequisites: 

● Basic understanding of Digital Electronics and Logic Design. 
● Familiarity with C programming language. 
● Basic knowledge of Computer Architecture and Organization. 
● Introductory understanding of Data Structures. 

Course Structure (Weekly Modules): 

● Week 1: Introduction to Embedded Systems 
○ Definition, Characteristics, and Classification 
○ History and Evolution of Embedded Systems 
○ Embedded System Components: Processor, Memory, I/O, Sensors, Actuators 
○ Applications of Embedded Systems (Consumer, Automotive, Industrial, 

Medical, etc.) 
○ Challenges and Design Considerations in Embedded Systems 

● Week 2: Microprocessors and Microcontrollers: The Brains of Embedded 
Systems 

○ Architecture of Microprocessors vs. Microcontrollers 
○ Key components: CPU, Memory (RAM, ROM, Flash), I/O Ports, Timers, 

Interrupt Controllers 



○ Instruction Set Architecture (ISA) and Assembly Language Basics 
○ Memory Organization and Addressing Modes 
○ Introduction to Specific Architectures (e.g., ARM Cortex-M, AVR, PIC) 

● Week 3: Embedded System Peripherals: Interfacing with the World 
○ Digital I/O: GPIOs, Push Buttons, LEDs 
○ Analog I/O: Analog-to-Digital Converters (ADCs), Digital-to-Analog 

Converters (DACs) 
○ Timers and Counters: PWM generation, Input Capture, Output Compare 
○ Serial Communication Protocols: UART, SPI, I2C 
○ Parallel Communication: Parallel Ports 
○ Introduction to DMA (Direct Memory Access) 

● Week 4: Embedded C Programming and Development Tools 
○ Review of C Language Features relevant to Embedded Systems (Pointers, 

Bitwise Operations, Volatile Keyword, Const, Structs) 
○ Memory Map and Linker Scripts 
○ Embedded C specific keywords and constructs 
○ Introduction to Integrated Development Environments (IDEs) 
○ Compilers, Assemblers, Linkers, and Debuggers 
○ Cross-Compilation and Toolchains 

● Week 5: Interrupts and Exception Handling 
○ Concept of Interrupts: Hardware vs. Software Interrupts 
○ Interrupt Service Routines (ISRs) and their characteristics 
○ Interrupt Latency and Response Time 
○ Interrupt Prioritization and Nesting 
○ Exception Handling: Traps and Faults 
○ Vector Table and Interrupt Controller Configuration 

● Week 6: Real-Time Operating Systems (RTOS) 
○ Introduction to RTOS: GPOS vs. RTOS 
○ Tasks, Task States, and Context Switching 
○ Scheduling Algorithms: Preemptive, Non-Preemptive, RMS, EDF 
○ Inter-Task Communication (ITC): Message Queues, Semaphores, Mutexes, 

Event Flags 
○ Resource Synchronization and Critical Section Problems (Priority Inversion, 

Deadlock) 
○ Time Management: System Tick, Delays, Software Timers 
○ Memory Management in RTOS 
○ Practical RTOS Examples (FreeRTOS, µC/OS-III) 

● Week 7: Embedded System Design Methodologies 
○ Embedded System Design Flow: Requirements, Architecture, Design, 

Implementation, Testing 
○ Hardware-Software Co-design and Partitioning 
○ Design Patterns for Embedded Systems 
○ Low-Power Design Techniques 
○ Debugging Strategies for Embedded Systems 
○ Testing and Validation of Embedded Systems 

● Week 8: Modelling and Specification 
○ The Importance of Modelling in Embedded Systems 
○ System-Level Modelling: Functional, Architectural, and Behavioral 



○ UML for Embedded Systems: Class Diagrams, State Machine Diagrams, 
Activity Diagrams, Sequence Diagrams 

○ Formal Methods in Embedded System Design 
○ Requirements Engineering: Functional vs. Non-Functional Requirements 
○ Specification Techniques: Natural Language, Structured English, Data Flow 

Diagrams 
○ Modelling Tools and Environments 

● Week 9: Embedded Networking and Communication Protocols 
○ Network Topologies and Layers in Embedded Systems 
○ Wired Protocols: Ethernet, CAN, LIN, I2C, SPI 
○ Wireless Protocols: Bluetooth, Wi-Fi, Zigbee, LoRa, RFID 
○ TCP/IP Stack in Embedded Systems 
○ Network Security in Embedded Devices 

● Week 10: Embedded System Security and Reliability 
○ Threats and Vulnerabilities in Embedded Systems 
○ Security Mechanisms: Cryptography, Secure Boot, TrustZone 
○ Hardware Security Modules (HSM) 
○ Reliability Concepts: MTTF, MTBF, Availability 
○ Fault Tolerance and Redundancy Techniques 
○ Error Detection and Correction Codes 

● Week 11: Sensor and Actuator Interfacing and Control 
○ Types of Sensors: Temperature, Pressure, Accelerometer, Gyroscope, 

Optical, Proximity 
○ Sensor Data Acquisition and Conditioning 
○ Types of Actuators: Motors (DC, Stepper, Servo), Relays, Solenoids 
○ Control Algorithms: PID Control, On-Off Control 
○ Closed-Loop Control Systems 

● Week 12: Advanced Topics and Future Trends in Embedded Systems 
○ Embedded Linux and Android for Embedded Systems 
○ Internet of Things (IoT) Architectures and Platforms 
○ Edge Computing in Embedded Systems 
○ Machine Learning on Embedded Devices (TinyML) 
○ Embedded System for Robotics and Autonomous Systems 
○ Emerging Technologies and Research Directions 

 
Module 8: Modelling and Specification - A Deep Dive into Embedded 
System Abstraction 
Course Overview: 

Welcome to Week 8 of our Embedded Systems course, where we shift our focus from the 
concrete hardware and low-level software to the critical, yet often overlooked, phases of 
Modelling and Specification. In the realm of complex embedded systems, building directly 
from raw code without a clear blueprint is akin to constructing a skyscraper without 
architectural drawings. This module emphasizes that effective design begins long before a 
single line of code is written or a component is soldered. We will systematically explore 



various abstract representations and formal techniques that allow designers to capture, 
analyze, and communicate system behavior, functionality, and constraints with precision. By 
mastering these modelling and specification techniques, you will learn to manage 
complexity, identify potential issues early in the design cycle, ensure traceability, and 
ultimately build more robust, reliable, and maintainable embedded systems that truly meet 
their stringent requirements. 

Learning Objectives: 

Upon successful completion of this comprehensive module, you will be proficient in: 

● Articulating and justifying the paramount importance of modelling and specification 
in the development lifecycle of modern embedded systems, particularly in managing 
complexity and ensuring correctness. 

● Categorizing and explaining different levels of system modelling, including 
functional, architectural, and behavioral models, and discerning their appropriate 
application at various stages of design. 

● Demonstrating proficiency in utilizing key diagrams from the Unified Modelling 
Language (UML), such as Class Diagrams, State Machine Diagrams, Activity 
Diagrams, and Sequence Diagrams, for effectively capturing the structure, 
behavior, and interactions within embedded software. 

● Comprehending the principles and benefits of formal methods in embedded 
system design, including their role in rigorous verification and validation of critical 
properties. 

● Distinguishing between and accurately defining functional and non-functional 
requirements, and understanding their critical influence on the overall system design 
and implementation. 

● Analyzing and applying diverse specification techniques, ranging from 
structured natural language and Structured English to Data Flow Diagrams, for 
unambiguously documenting system requirements and design decisions. 

● Identifying and evaluating various modelling tools and integrated environments that 
facilitate the practical application of these modelling and specification methodologies. 

 
Module 8.1: The Fundamental Role and Benefits of Modelling in 
Embedded Systems Design 
This introductory section establishes why modelling is not just a useful tool, but an 
indispensable practice for developing robust and complex embedded systems. 

● 8.1.1 Why Model? Addressing Complexity in Embedded Systems 
○ The Challenge of Complexity: Modern embedded systems are incredibly 

intricate. They often involve hundreds of thousands, if not millions, of lines of 
code, interact with a multitude of diverse hardware peripherals, operate 
concurrently with strict timing constraints, and must interact reliably with 
external environments. Without a systematic approach, managing this 
inherent complexity becomes overwhelming, leading to increased 
development time, higher defect rates, and significant cost overruns. 



○ Analogy to Traditional Engineering: Just as architects use blueprints for 
buildings and engineers use schematics for electronic circuits, software 
engineers for embedded systems use models. These models provide 
abstract, simplified representations of the system, allowing designers to focus 
on specific aspects without being overwhelmed by unnecessary detail. 

○ What is a Model? A model is an abstraction of a system that allows us to 
reason about its properties and behaviors without building the actual system. 
It's a simplified representation of reality, highlighting certain aspects while 
suppressing others. 

● 8.1.2 Key Benefits of Adopting a Modelling Approach 
Implementing modelling as a core part of the embedded system design process 
yields numerous advantages: 

○ Complexity Management: Breaks down a large, monolithic system into 
smaller, more manageable components, each with well-defined interfaces and 
responsibilities. This hierarchical decomposition aids in understanding and 
development. 

○ Early Error Detection and Prevention: By creating abstract models, 
designers can simulate, analyze, and verify system behavior before 
committing to expensive hardware or extensive coding. This allows for the 
identification and rectification of design flaws, logical errors, race conditions, 
or performance bottlenecks much earlier in the development lifecycle, when 
they are significantly cheaper and easier to fix. 

○ Enhanced Communication: Models provide a clear, unambiguous, and 
often visual language for communicating design ideas, system architecture, 
and functional behavior among diverse stakeholders: software engineers, 
hardware engineers, domain experts, project managers, and even clients. 
This reduces misinterpretations and ensures everyone is on the same page. 

○ Improved Design Quality and Reliability: Rigorous modelling, especially 
with formal methods, helps ensure that the system behaves as intended 
under all specified conditions, leading to higher quality, more robust, and 
more reliable products. 

○ Facilitates Traceability: Models provide a clear link between high-level 
requirements and low-level implementation details. This traceability is crucial 
for verification, validation, and regulatory compliance (e.g., in medical or 
automotive industries). 

○ Supports Iterative Development: Models can be refined progressively. Initial 
high-level models can evolve into detailed design models as understanding 
deepens and requirements solidify. 

○ Documentation and Maintenance: Models serve as living documentation of 
the system's design. This clear documentation is invaluable for future 
maintenance, updates, and for onboarding new team members. 

○ Performance and Resource Prediction: Certain models can be used to 
predict system performance (e.g., CPU utilization, latency) and resource 
consumption (e.g., memory usage) early in the design cycle, allowing for 
informed architectural decisions. 

● 8.1.3 The Interplay of Modelling and Specification 
Modelling and specification are two sides of the same coin, working synergistically: 



○ Specification: Primarily focuses on what the system should do. It's about 
precisely defining the requirements, constraints, and external behavior of the 
system. Specifications are often text-based or semi-formal. 

○ Modelling: Focuses on how the system will achieve its specified behavior. It's 
about representing the internal structure and dynamics of the system. Models 
are often graphical or formal. 

○ Synergy: Specifications drive the creation of models, and models help to 
refine and clarify specifications. Models can uncover ambiguities or 
inconsistencies in requirements, leading to improved specifications. 

 
Module 8.2: Levels and Types of System Modelling in Embedded Design 
Embedded systems can be modelled at various levels of abstraction, each serving a distinct 
purpose in the design process. 

● 8.2.1 Abstraction Hierarchy in System Modelling 
The design process typically progresses from high-level, abstract models to more 
detailed, implementation-specific models. 

○ System-Level Modelling: The highest level of abstraction. Focuses on the 
overall system functionality and architecture without delving into low-level 
implementation details. Answers "What does the system do?" and "What are 
its major interacting parts?" 

■ Functional Modelling: Describes the system's external behavior from 
a user's perspective. It focuses on the transformations of inputs to 
outputs and the logical operations performed, independent of how 
they are implemented. 

■ Architectural Modelling: Defines the high-level structural 
organization of the system. It identifies the major hardware and 
software components, their interconnections, and how they are 
partitioned. It answers "What are the big blocks and how do they 
connect?" This is crucial for hardware-software co-design. 

■ Behavioral Modelling: Describes the dynamic behavior of the system 
over time, often through states and transitions, or through the 
sequence of events and actions. It focuses on how the system reacts 
to stimuli and changes its internal state. 

○ Component-Level Modelling: Focuses on the internal design of individual 
hardware or software components identified at the system level. This is where 
details like data structures, algorithms, and specific interface protocols begin 
to emerge. 

○ Implementation-Level Modelling: The lowest level of abstraction, closest to 
actual code or hardware description. This includes detailed data structures, 
algorithms, and sometimes even models representing specific CPU 
instructions or hardware gate logic. 

● 8.2.2 Detailed Types of System Modelling 
○ Functional Modelling: 



■ Purpose: To describe what the system is supposed to do, focusing on 
the logical operations and data transformations. It hides internal 
implementation details. 

■ Techniques: Often uses: 
■ Data Flow Diagrams (DFDs): Illustrate the flow of data 

through a system, showing processes (transformations), data 
stores, external entities, and data flows. They are useful for 
understanding the logical relationships between functions. 

■ Use Case Diagrams (UML): Describe the system's 
functionality from the perspective of external actors (users or 
other systems) interacting with the system. Each use case 
represents a complete piece of functionality provided by the 
system. 

■ Example (Car Cruise Control): A functional model might describe 
"Maintain speed," "Accelerate," "Decelerate," "Resume" without 
detailing how the engine or sensors achieve this. 

○ Architectural Modelling: 
■ Purpose: To define the high-level structure of the system, identifying 

major hardware and software components, their interfaces, and how 
they communicate. This is critical for allocating responsibilities and for 
hardware-software partitioning. 

■ Techniques: 
■ Block Diagrams: Simple graphical representations showing 

major system components (blocks) and their connections. 
■ Component Diagrams (UML): Show the structural 

relationships between software components (executables, 
libraries, files) and their interfaces. 

■ Deployment Diagrams (UML): Illustrate the physical 
deployment of software components onto hardware nodes. 

■ Example (Car Cruise Control): An architectural model might show a 
"Sensor Interface Module," a "Control Algorithm Module," an "Actuator 
Control Module," and a "User Interface Module," along with the 
communication buses connecting them. It would specify which 
modules run on which microcontrollers. 

○ Behavioral Modelling: 
■ Purpose: To describe the dynamic behavior of the system over time, 

how it responds to events, and how its internal state changes. This is 
crucial for real-time and reactive systems. 

■ Techniques: 
■ State Machine Diagrams (UML / Statecharts): Represent the 

different states a system or component can be in, the events 
that trigger transitions between these states, and the actions 
performed during state entry, exit, or on transitions. Essential 
for reactive systems. 

■ Activity Diagrams (UML): Illustrate the flow of control or data 
through a sequence of activities, showing decision points, 
parallel activities, and loops. Useful for modelling workflows 
and complex algorithms. 



■ Sequence Diagrams (UML): Show the interaction between 
objects or components in a time-ordered sequence. They 
depict the messages passed between objects and the order in 
which they occur. Useful for understanding use cases and 
interactions. 

■ Timing Diagrams: Graphical representations showing the 
values of signals or variables over time, crucial for 
understanding precise timing relationships between hardware 
components or tasks. 

■ Example (Car Cruise Control): A behavioral model might show the 
"Cruise Control State Machine" with states like "Off," "Active," 
"Paused," and transitions triggered by "Set," "Brake," "Resume" 
events. A sequence diagram might show the interaction between the 
"User Interface," "Control Algorithm," and "Actuator" when the "Set 
Speed" button is pressed. 

 
Module 8.3: Unified Modelling Language (UML) for Embedded System 
Design 
UML has become the de facto standard for object-oriented modelling. While comprehensive, 
specific diagrams are particularly powerful for embedded system design. 

● 8.3.1 Introduction to UML and its Relevance to Embedded Systems 
○ What is UML? The Unified Modelling Language is a standardized, 

general-purpose visual modelling language used in software engineering. It 
provides a rich set of graphical notations for specifying, visualizing, 
constructing, and documenting the artifacts of a software-intensive system. It 
is not a programming language but a language for expressing software 
designs. 

○ Why UML for Embedded Systems? 
■ Complexity Management: Helps break down complex embedded 

systems into manageable parts. 
■ Visual Communication: Provides a clear, unambiguous visual 

language for hardware and software engineers, and domain experts. 
■ Behavioral Capture: Especially powerful for modelling the reactive, 

concurrent, and state-dependent nature of embedded systems. 
■ Hardware/Software Interface: Can effectively model the interfaces 

and interactions between hardware and software components. 
■ Industry Standard: Widely recognized and supported by various 

tools, promoting consistency. 
● 8.3.2 Key UML Diagrams for Embedded Systems (Detailed Exploration) 

○ A. Class Diagrams: Modelling Static Structure and Data 
■ Purpose: To show the static structure of the system, including classes 

(representing concepts, components, or entities), their attributes 
(data), operations (methods/functions), and the relationships between 
them (associations, inheritance, aggregation, composition). 



■ Relevance to Embedded Systems: 
■ Modelling data structures and their relationships (e.g., sensor 

data structures, configuration structs). 
■ Defining software components as classes with their interfaces. 
■ Representing hardware abstraction layers (HALs) or device 

drivers as classes that encapsulate peripheral registers and 
operations. 

■ Designing the object-oriented architecture of the embedded 
software. 

■ Elements: Class (name, attributes, operations), Association 
(relationship), Aggregation (part-whole, part can exist independently), 
Composition (strong part-whole, part cannot exist independently), 
Inheritance (is-a relationship). 

○ B. State Machine Diagrams (Statecharts): Modelling Reactive Behavior 
■ Purpose: To model the dynamic behavior of an object, component, or 

the entire system in response to external events. They show all 
possible states an entity can be in, the events that cause transitions 
between these states, and the actions performed during these 
transitions or upon entering/exiting a state. They are particularly vital 
for reactive systems. 

■ Relevance to Embedded Systems: Embedded systems are 
inherently reactive, constantly responding to sensor inputs, user 
commands, and internal timers. 

■ Modelling the operational modes of a device (e.g., "power-up," 
"active," "sleep," "fault"). 

■ Designing control logic (e.g., motor control states, 
communication protocol states). 

■ Handling sequences of events and timeouts. 
■ Defining task behavior in an RTOS environment (e.g., a "Data 

Acquisition Task" might have states like "Idle," "Collecting," 
"Processing," "Transmitting"). 

■ Elements: State (rounded rectangles, with optional entry/exit actions), 
Transition (arrow between states, labeled with event [guard]/action), 
Initial State (solid circle), Final State (concentric circles), Event, Guard 
Condition (Boolean expression that must be true for a transition), 
Action (atomic operation performed during transition). 

■ Advanced Features (Hierarchy, Concurrency): Can model nested 
states (substates) and concurrent states (orthogonal regions), which 
are powerful for complex embedded behaviors. 

○ C. Activity Diagrams: Modelling Workflows and Control Flow 
■ Purpose: To model the flow of control or data through a sequence of 

activities. They are essentially flowcharts, but with extensions for 
parallel activities, decision points, and merging. They focus on the 
actions performed and the order in which they happen. 

■ Relevance to Embedded Systems: 
■ Modelling complex algorithms or data processing workflows 

(e.g., signal processing pipeline). 



■ Describing a sequence of operations within a single task or 
between multiple tasks. 

■ Illustrating initialization sequences or shutdown procedures. 
■ Visualizing concurrent processes within the system. 

■ Elements: Action (rounded rectangles), Control Flow (arrows), Initial 
Node (solid circle), Final Node (concentric circles), Decision Node 
(diamond for conditional branching), Merge Node (diamond for 
rejoining branches), Fork Node (thick bar for parallel activities), Join 
Node (thick bar for synchronizing parallel activities). 

○ D. Sequence Diagrams: Modelling Interaction and Timing 
■ Purpose: To show the interactions between objects or components in 

a time-ordered sequence. They emphasize the messages exchanged 
between objects and the order in which these messages occur over 
time. 

■ Relevance to Embedded Systems: 
■ Visualizing communication protocols (e.g., I2C communication 

sequence between master and slave). 
■ Tracing the execution flow for a specific use case scenario. 
■ Understanding the interactions between different tasks in an 

RTOS system (e.g., how a sensor task, processing task, and 
display task communicate). 

■ Identifying potential timing issues or deadlocks in interactions. 
■ Elements: Lifeline (vertical dashed line for each object/participant), 

Activation Bar (vertical rectangle on lifeline indicating active 
execution), Message (horizontal arrow with message name), 
Self-Message (message to self), Found Message (arrow from 
nowhere), Lost Message (arrow to nowhere). 

 
Module 8.4: Formal Methods in Embedded System Design 
Formal methods represent a rigorous, mathematically-based approach to software and 
hardware design, offering a higher level of assurance for critical systems. 

● 8.4.1 Introduction to Formal Methods 
○ Concept: Formal methods involve the application of mathematical notations, 

logical systems, and rigorous analytical techniques to the specification, 
design, and verification of software and hardware systems. The goal is to 
create systems whose behavior can be mathematically proven to be correct, 
consistent, and complete. 

○ Contrast with Informal Methods: Unlike natural language specifications or 
informal diagrams, formal methods eliminate ambiguity and allow for 
automated reasoning about system properties. 

○ Trade-off: While offering high assurance, formal methods require specialized 
expertise and can be time-consuming and computationally intensive, making 
them suitable primarily for safety-critical or mission-critical systems. 

● 8.4.2 Why Formal Methods for Embedded Systems? 



○ High-Assurance Requirements: Embedded systems, particularly those in 
domains like avionics, medical devices, automotive control, and nuclear 
power, often have stringent safety, security, and reliability requirements where 
failure is unacceptable. Formal methods provide the highest level of 
confidence in correctness. 

○ Concurrency and Timing Issues: Embedded systems are inherently 
concurrent and time-sensitive. Formal methods are particularly adept at 
modeling and verifying properties related to concurrency (race conditions, 
deadlocks) and real-time behavior (deadlines, response times). 

○ Complexity Management (Rigorous): For truly complex interactions, 
especially concurrent ones, informal methods might miss subtle bugs. Formal 
methods can systematically explore all possible execution paths. 

● 8.4.3 Core Activities in Formal Methods 
○ A. Formal Specification: 

■ Purpose: To define the system's behavior precisely using a formal 
language based on logic or discrete mathematics. This produces an 
unambiguous, verifiable, and consistent specification. 

■ Techniques: 
■ Algebraic Specifications: Define data types and their 

operations using algebraic equations (e.g., stack operations). 
■ Model-Based Specifications: Describe the system as a 

mathematical model (e.g., a state machine or a set of 
communicating processes). Examples include Z notation, 
VDM (Vienna Development Method), and CSP 
(Communicating Sequential Processes). 

■ Process Algebras: (e.g., CSP, CCS) used to model 
concurrent systems as collections of interacting processes. 

○ B. Formal Verification: 
■ Purpose: To mathematically prove that a system's design (model) or 

implementation (code) satisfies its formal specification. 
■ Techniques: 

■ Theorem Proving: Involves constructing a mathematical proof 
that the system model (or code) satisfies the specified 
properties. This is typically done manually or with interactive 
theorem provers, requiring significant human effort. 

■ Model Checking: An automated technique that exhaustively 
explores all possible states and transitions of a finite-state 
model of the system to check if it violates any specified 
properties (expressed in temporal logic). If a violation is found, 
the model checker provides a counterexample (a trace leading 
to the error). Highly effective for concurrent and reactive 
systems. 

■ Static Analysis: Analyzes source code without executing it to 
find potential bugs or confirm properties (e.g., absence of null 
pointer dereferences, stack overflows). While not strictly 
"formal proof," it leverages formal reasoning. 

● 8.4.4 Limitations of Formal Methods 



○ Cost and Effort: Can be very time-consuming and expensive to apply, 
requiring highly skilled experts. 

○ Scalability: While powerful, applying them to extremely large and complex 
systems can be computationally intractable (especially model checking due to 
the "state explosion problem"). 

○ Human Error: The formal specification itself can still contain errors, or the 
formal model might not accurately reflect the real-world system. 

 
Module 8.5: Requirements Engineering and Specification Techniques 
Clear, unambiguous, and complete requirements are the bedrock of successful embedded 
system development. This module focuses on how to define "what" the system should do. 

● 8.5.1 The Critical Role of Requirements Engineering 
○ Definition: Requirements engineering is the systematic process of eliciting, 

documenting, analyzing, validating, and managing system requirements 
throughout the development lifecycle. It's the crucial first step that defines the 
problem to be solved. 

○ Why it's Crucial for Embedded Systems: 
■ High Stakes: Errors in requirements can lead to catastrophic failures 

in safety-critical embedded systems. 
■ Hardware/Software Interdependence: Requirements often span 

both hardware and software, demanding careful coordination. 
■ Real-Time Constraints: Unique timing, performance, and power 

requirements must be precisely captured. 
■ Early Problem Detection: Misunderstood or incomplete requirements 

are the root cause of many project failures. Identifying them early 
saves immense time and cost. 

● 8.5.2 Types of Requirements: Functional vs. Non-Functional 
○ A. Functional Requirements: 

■ Definition: These define what the system must do or what functions it 
must perform. They describe the services the system should provide 
to its users or to other systems. 

■ Characteristics: Typically expressed as actions, behaviors, or data 
transformations. 

■ Examples in Embedded Systems: 
■ "The system shall activate the motor when the temperature 

exceeds 80 degrees Celsius." 
■ "The system shall transmit sensor data via SPI every 100 

milliseconds." 
■ "The system shall display the battery level on the LCD screen." 
■ "The system shall store configuration settings in non-volatile 

memory." 
○ B. Non-Functional Requirements (Quality Attributes): 

■ Definition: These define how well the system performs its functions or 
what qualities it must possess. They specify constraints on the 



system's operation, development, or environment. They are often 
more challenging to quantify and verify than functional requirements. 

■ Categories and Examples in Embedded Systems: 
■ Performance: Response time, throughput, execution speed. 

■ "The system shall respond to a critical alarm within 50 
microseconds." 

■ "The control loop shall execute with a period of 1 
millisecond ± 10 microseconds." 

■ Reliability: Likelihood of failure, fault tolerance, availability, 
mean time between failures (MTBF). 

■ "The system shall operate continuously for 5 years 
without failure." 

■ "The system shall recover from a transient power loss 
within 1 second." 

■ Safety: Prevention of harm to users or environment. 
■ "The motor shall immediately shut down if an 

overcurrent condition is detected." 
■ "The system shall ensure that two mutually exclusive 

actuators are never active simultaneously." 
■ Security: Protection against unauthorized access or attacks. 

■ "The firmware update process shall be 
cryptographically authenticated." 

■ "All sensitive data stored on the device shall be 
encrypted." 

■ Usability: Ease of use, learning, and user interface design. 
■ "The user interface shall be intuitive for operators with 

minimal training." 
■ Maintainability: Ease of modification, repair, and evolution. 

■ "The software shall be modular, allowing independent 
updates of driver components." 

■ Portability: Ease of adapting to different hardware or software 
environments. 

■ "The application layer shall be hardware-agnostic, 
using a well-defined HAL." 

■ Cost and Resource Constraints: Limits on budget, memory, 
CPU, power consumption. 

■ "The system shall operate on a single 3.3V power 
supply." 

■ "The maximum Flash memory usage shall not exceed 
128 KB." 

■ "The average power consumption in sleep mode shall 
be less than 50 microamperes." 

■ Environmental Constraints: Operating temperature, humidity, 
vibration, EMC compatibility. 

■ "The device shall operate reliably in temperatures 
ranging from -40°C to +85°C." 



● 8.5.3 Common Specification Techniques 
Once requirements are elicited, they need to be documented clearly and 
unambiguously. 

○ A. Natural Language Specification (Plain Text): 
■ Concept: Requirements are written using ordinary human language 

(e.g., English). 
■ Advantages: Easy to understand for all stakeholders, requires no 

special training. 
■ Disadvantages: Prone to ambiguity, incompleteness, inconsistency, 

and redundancy. Words can have multiple interpretations. 
■ Mitigation: Use structured templates, glossaries, clear sentence 

structures, and active voice. 
○ B. Structured English (Pseudo-code like): 

■ Concept: Uses a limited and defined subset of natural language, 
combined with keywords and structures from programming languages 
(e.g., IF-THEN-ELSE, WHILE-DO, sequence of steps) to reduce 
ambiguity. 

■ Advantages: More precise than plain natural language, still relatively 
easy to read for non-programmers. 

■ Disadvantages: Can still have some ambiguity, limited in expressing 
complex concurrency or timing. 

■ Example: 

IF Sensor_Reading > Threshold THEN 
    Start_Motor 
ELSE IF Motor_Running THEN 
    Stop_Motor 
END IF 

■  
■  

○ C. Data Flow Diagrams (DFDs): 
■ Concept: A graphical technique used in structured analysis to 

illustrate the flow of data through a system. It shows how data is 
processed, stored, and moved from one part of the system to another. 
DFDs do not show control flow (e.g., decisions, loops). 

■ Elements: 
■ Process (Rounded Rectangle/Circle): Transforms incoming 

data flows into outgoing data flows. 
■ Data Store (Open Rectangle): Represents a place where 

data is held (e.g., a database, a file, a memory buffer). 
■ External Entity (Square): Represents sources or sinks of data 

outside the system boundary (e.g., user, sensor, another 
system). 

■ Data Flow (Arrow): Represents the movement of data. 
■ Levels: DFDs can be hierarchical: 



■ Context Diagram (Level 0): Shows the entire system as a 
single process, with all its external entities and major data 
flows. 

■ Level 1 DFD: Decomposes the single process of the context 
diagram into its major sub-processes and data stores. 

■ Further levels (Level 2, etc.) can detail each sub-process. 
■ Advantages: Excellent for visualizing data relationships and 

identifying logical functions. Helps in understanding the system's 
overall data processing requirements. 

■ Disadvantages: Does not show timing, control flow, or detailed 
processing logic. 

○ D. Formal Specification Languages (Refer to Module 8.4): 
■ Concept: Using mathematically precise languages (e.g., Z, VDM, 

CSP, temporal logic) to define requirements rigorously. 
■ Advantages: Eliminates ambiguity, enables mathematical proof of 

properties. 
■ Disadvantages: Requires specialized skills, can be complex. 

 
Module 8.6: Tools and Environments for Modelling and Specification 
The theoretical concepts of modelling and specification are significantly enhanced by the use 
of appropriate software tools. 

● 8.6.1 Categories of Modelling Tools 
○ UML Modelling Tools: 

■ Purpose: To create, edit, and manage various UML diagrams. Many 
tools can generate code stubs (e.g., C++ class definitions) from 
diagrams or reverse-engineer diagrams from existing code. 

■ Examples: Enterprise Architect, Visual Paradigm, Draw.io (simpler), 
PlantUML (text-based generation). 

○ Statechart/State Machine Tools: 
■ Purpose: Specialized tools for designing and simulating complex 

state machines. Some can directly generate C/C++ code from the 
statechart models. 

■ Examples: Stateflow (part of MATLAB/Simulink), QM (Quantum 
Leaps for event-driven embedded systems). 

○ Simulation and Emulation Tools: 
■ Purpose: To simulate the behavior of the entire embedded system or 

specific components (hardware or software) without needing the 
actual physical hardware. Allows for early testing and validation. 

■ Examples: Proteus, MPLAB SIM (for Microchip MCUs), Keil µVision 
simulator, specific processor emulators (e.g., ARM Fast Models). 

○ Formal Verification Tools (Model Checkers): 
■ Purpose: Tools that automate the process of checking if a system 

model satisfies a given formal property. 



■ Examples: Spin (for verifying concurrent systems specified in 
Promela), NuSMV. These are specialized tools for advanced use 
cases. 

○ Requirements Management Tools: 
■ Purpose: To document, track, trace, and manage system 

requirements throughout the entire project lifecycle. They help link 
requirements to design elements, test cases, and source code. 

■ Examples: IBM DOORS, Jama Connect, ReqIF (standard for 
requirements exchange), Jira (with plugins). 

● 8.6.2 Integrated Development Environments (IDEs) with Modelling Support 
Many modern IDEs for embedded systems integrate some level of modelling or 
visualization capabilities. 

○ Examples: Keil µVision, IAR Embedded Workbench, Atmel Studio, 
STM32CubeIDE often include: 

■ Code generation wizards based on peripheral configurations. 
■ Some visual configuration tools for RTOS tasks and objects. 
■ Limited graphical debugging views. 

○ Benefits: A unified environment reduces context switching for developers. 
● 8.6.3 The Importance of Version Control and Collaboration in Modelling 

Just like source code, models are critical assets that evolve. 
○ Version Control Systems (VCS): All models (UML files, statechart 

definitions, requirement documents) should be managed under a VCS (e.g., 
Git, SVN). This allows for tracking changes, reverting to previous versions, 
and merging concurrent work. 

○ Collaborative Platforms: Many modern modelling tools and requirements 
management systems offer built-in collaboration features, allowing multiple 
team members to work on and review models simultaneously. 
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